Login / Signup

Influence of ionic liquid on Novozym 435-catalyzed the transesterification of castor oil and ethyl caffeate.

Shang-De SunYaping LvSha Zhu
Published in: 3 Biotech (2019)
Caffeic acid (CA), one kind of phenolic acids widely occurring in the plant kingdom, can be used as potential UV protective ingredient and antioxidant. However, the application of CA was limited because of its unsatisfactory solubility in hydrophilic and lipophilic media. In this work, BMIMPF6, one kind of ionic liquids (ILs), was developed as an environmental friendly reaction media for the enzymatic preparation of CA derivatives by the transesterification of castor oil (CO) and ethyl caffeate (EC). Different series of ILs with BF 4 - , TF 2 - , and PF 6 - were screened and compared, and the effects of transesterification variables [temperature (60-100 °C) enzyme concentration (10-90 mg/mL), substrate molar ratio (CO/EC, 1:1-5:1), water load (0-8%), and reaction pressure] were also investigated. Results showed that, in the IL system, hydrophilic and lipophilic products were formed by two competitive reactions [(i) hydrolysis + transesterification and (ii) transesterification]. The maximum hydrophilic caffeoyl lipids yield (26.10 ± 0.28%) and reaction selectivity for hydrophilic caffeoyl lipids (0.4) was achieved in BMIMPF6 system. The increases of substrate ratio (molar ratio of CO to EC, from 1:1 to 5:1), water load (from 0 to 8%), and enzyme concentration (from 10 to 90 mg/mL) were in favor of hydrophilic caffeoyl lipid formation. However, the vacuum system and high temperature (from 70 to 100 °C) are favorable for lipophilic caffeoyl lipids formation. Under the optimal reaction conditions (90 °C, 75 mg/mL enzyme concentration, substrate ratio 3:1, 60 h, and 10 mmHg vacuum pressures), the maximum EC conversion was 72.48 ± 2.67%. The activation energies of the transesterification, and the selective formations of lipophilic and hydrophilic products were calculated as 44.55, 47.65, and 54.96 kJ/mol, respectively.
Keyphrases