Login / Signup

Microautophagy upregulation in cutaneous lymph nodes of dogs naturally infected by Leishmania infantum.

Francesca De FalcoBrunella RestucciChiara UrraroSante Roperto
Published in: Parasitology research (2020)
This is the first study showing an in vivo microautophagy upregulation by Leishmania infantum in dogs. Both Leishmania amastigotes and promastigotes were detected in the cytoplasm of many professional and nonprofessional phagocytic cells of popliteal lymph node of three dogs suffering from chronic cutaneous leishmaniasis. Ultrastructurally, parasites appeared to be wrapped by lysosomes and/or multivesicular bodies. Neither phagophores nor double-membraned vacuoles consistent with autophagosomes were observed. Transcription factor EB (TFEB), a key factor involved in lysosome biogenesis, showed a statistically significant increase in the total component when examined by western blot in samples from leishmaniotic dogs compared with samples from healthy dogs. Instead, phosphorylated TFEB showed unmodified expression levels both in leishmaniotic and healthy dogs. Furthermore, Hsc70 and endosomal sorting complex required for transport (ESCRT)-I, which are known to play a role in microautophagy, showed no variation in expression levels both in diseased and healthy animals. Vps4A/B, an evolutionary conserved ATPase responsible for ESCRT-I complex disassembly and MVB maturation, was statistically significantly overexpressed in lymph nodal samples from leishmaniotic dogs. Bag3 was downregulated in diseased dogs whereas CHIP, p62, and LC3-II did not show any variation in expression levels. The altered expression profile of Bag3 suggested an altered interaction of Bag3 with Hsc70 and CHIP, which usually form a molecular complex involved in autophagosome-lysosome pathways. Ultrastructural and molecular findings suggested that the microautophagy pathway is upregulated in lymph nodes of dogs suffering from a chronic natural infection by Leishmania infantum.
Keyphrases