Login / Signup

Increasing roughage quality by using alfalfa hay as a substitute for concentrate mitigates CH4 emissions and urinary N and ammonia excretion from dry ewes.

Chunmei WangCheng ZhangTianhai YanShenghua ChangWanhe ZhuMetha WanapatFu-Jiang Hou
Published in: Journal of animal physiology and animal nutrition (2019)
Twelve Hu sheep × thin-tail Han crossbred dry ewes with an average body weight of 32.6 ± 0.68 kg and an age of 3 years were arranged in a 3 × 3 Latin square design, with each experimental period of 24 d to evaluate the effect of substituting alfalfa hay in a portion of concentrate on nutrient intake, digestibility, N utilisation efficiency and methane emissions. The ratios of corn straw to alfalfa to concentrate for 3 diet treatments were 60:0:40, 60:15:25 and 60:30:10, respectively. Intake and digestibility were measured for each of the ewes, which were housed in individual metabolism crates for 6 d after an adaptation period of 14 d, and the feed was offered at 1.2 MEm to ensure approximately 10% orts. Methane emissions were determined in a respiration chamber for 2 consecutive d. An increase in the levels of alfalfa as a substitute for concentrate significantly increased the roughage, NSC and ADF intake and faecal N output as a proportion of N intake and manure N output. Furthermore, this increase in alfalfa input levels decreased DE, ME and N intake; nutrient digestibility; DE/GE, ME/GE and CH4 emissions per day; CH4 output expressed as a portion of the DM, OM and GE intake; and urinary N and ammonia N output, especially between extreme treatments. Alfalfa input levels had no effect on the BW, DM and GE intake; the EB or EB/GE intake; and the retained N. This study indicated that increasing alfalfa input as a substitute for concentrate could significantly decrease the digestibility, CH4 emissions and urinary N and NH4 + -N outputs; and shift the N excretion from urine to faeces; and could sustain a similar DM intake.
Keyphrases
  • weight gain
  • room temperature
  • anaerobic digestion
  • body weight
  • metabolic syndrome
  • type diabetes
  • adipose tissue
  • risk assessment
  • glycemic control
  • lactic acid