Login / Signup

Phytochemical Compositions and Antioxidant Activities of Essential Oils Extracted from the Flowers of Paeonia delavayi Using Supercritical Carbon Dioxide Fluid.

Xiao YuHuaibi ZhangJuan WangJunming WangZhen-Xing WangJinbo Li
Published in: Molecules (Basel, Switzerland) (2022)
Essential oils were extracted from dark-purple, red and yellow petals of Paeonia delavayi using Supercritical Carbon Dioxide method. The compositions of essential oils were analyzed using gas chromatography-mass spectrometry (GC-MS). Antioxidant activity assays were carried out using DPPH, ABTS- and FRAP methods. Total polyphenols and total flavonoids were measured to evaluate the in vitro antioxidant activity in addition to the volatile compounds contained in the essential oils extracted from the flower petals of P. delavayi with the three flower colors. A total of 194 compounds were detected from essential oils of P. delavayi flowers, including 83 in dark-purple petals, 90 in red petals and 80 in yellow petals. These compounds mainly include alcohols, aldehydes, ketones, alkenes, alkanes, esters and polyphenols. The results showed that the volatile compounds accumulated differentially among the essential oils from the different colors of flower petals. Principal component analysis (PCA) indicated that essential oils derived from dark-purple and red petals were more closely clustered while the yellow petal essential oil was very different with both the purple-red and red. Antioxidant assays suggested that the radical scavenging activity and the iron reduction antioxidant activity in the essential oils were highly correlated with the flower petal colors. These results suggest P. delavayi flower petals are potentially good resources for high quality essential oils and natural antioxidants.
Keyphrases
  • carbon dioxide
  • gas chromatography mass spectrometry
  • oxidative stress
  • essential oil
  • anti inflammatory
  • single cell
  • liquid chromatography