Login / Signup

Resource Cluster-Based Resource Search and Allocation Scheme for Vehicular Clouds in Vehicular Ad Hoc Networks.

Hyunseok ChoiYoonhyeong LeeGayeong KimEuisin LeeYoungju Nam
Published in: Sensors (Basel, Switzerland) (2024)
Vehicular clouds represent an appealing approach, leveraging vehicles' resources to generate value-added services. Thus, efficiently searching for and allocating resources is a challenge for the successful construction of vehicular clouds. Many recent schemes have relied on hierarchical network architectures using clusters to address this challenge. These clusters are typically constructed based on vehicle proximity, such as being on the same road or within the same region. However, this approach struggles to rapidly search for and consistently allocate resources, especially considering the diverse resource types and varying mobility of vehicles. To address these limitations, we propose the Resource Cluster-based Resource Search and Allocation (RCSA) scheme. RCSA constructs resource clusters based on resource types rather than vehicle proximity. This allows for more efficient resource searching and allocation. Within these resource clusters, RCSA supports both intra-resource cluster search for the same resource type and inter-resource cluster search for different resource types. In RCSA, vehicles with longer connection times and larger resource capacities are allocated in vehicular clouds to minimize cloud breakdowns and communication traffic. To handle the reconstruction of resource clusters due to vehicle mobility, RCSA implements mechanisms for replacing Resource Cluster Heads (RCHs) and managing Resource Cluster Members (RCMs). Simulation results validate the effectiveness of RCSA, demonstrating its superiority over existing schemes in terms of resource utilization, allocation efficiency, and overall performance.
Keyphrases
  • randomized controlled trial
  • mental health
  • air pollution