Login / Signup

A prospective analysis of circulating saturated and monounsaturated fatty acids and risk of non-Hodgkin lymphoma.

Yu-Han ChiuKimberly A BertrandShumin ZhangFrancine LadenMara Meyer EpsteinBernard A RosnerStephanie ChiuveHannia CamposEdward L GiovannucciJorge E ChavarroBrenda M Birmann
Published in: International journal of cancer (2018)
Circulating saturated (SFA) and monounsaturated fatty acids (MUFA), which are predominantly derived from endogenous metabolism, may influence non-Hodgkin lymphoma (NHL) risk by modulating inflammation or lymphocyte membrane stability. However, few biomarker studies have evaluated NHL risk associated with these fats. We conducted a prospective study of 583 incident NHL cases and 583 individually matched controls with archived pre-diagnosis red blood cell (RBC) specimens in the Nurses' Health Study (NHS) and Health Professionals Follow-Up Study (HPFS). RBC membrane fatty acid levels were measured using gas chromatography. Using multivariable logistic regression, we estimated odds ratios (OR) and 95% confidence intervals (CI) for risk of NHL and major NHL subtypes including T cell NHL (T-NHL), B cell NHL (B-NHL) and three individual B-NHLs: chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. RBC SFA and MUFA levels were not associated with NHL risk overall. However, RBC very long chain SFA levels (VLCSFA; 20:0, 22:0, 23:0) were inversely associated with B-NHLs other than CLL/SLL; ORs (95% CIs) per standard deviation (SD) increase in level were 0.81 (0.70, 0.95) for 20:0, 0.82 (0.70, 0.95) for 22:0 and 0.82 (0.70, 0.96) for 23:0 VLCSFA. Also, both VLCSFA and MUFA levels were inversely associated with T-NHL [ORs (95% CIs) per SD: VLCSFA, 0.63 (0.40, 0.99); MUFA, 0.63 (0.40, 0.99)]. The findings of inverse associations for VLCSFAs with B-NHLs other than CLL/SLL and for VLCSFA and MUFA with T-NHL suggest an influence of fatty acid metabolism on lymphomagenesis.
Keyphrases