Transforming growth factor-β1 promotes fibrosis but attenuates calcification of valvular tissue applied as a three-dimensional calcific aortic valve disease model.
Alexander JenkeJulia KistnerSarah SaradarAgunda ChekhoevaMariam YazdanyarAnn Kathrin BergmannMelanie Vera RötepohlArtur LichtenbergPayam AkhyariPublished in: American journal of physiology. Heart and circulatory physiology (2020)
Calcific aortic valve disease (CAVD) is characterized by valvular fibrosis and calcification and driven by differentiating valvular interstitial cells (VICs). Expression data from patient biopsies suggest that transforming growth factor (TGF)-β1 is implicated in CAVD pathogenesis. However, CAVD models using isolated VICs failed to deliver clear evidence on the role of TGF-β1. Thus, employing cultures of aortic valve leaflets, we investigated effects of TGF-β1 in a tissue-based three-dimensional (3-D) CAVD model. We found that TGF-β1 induced phosphorylation of Mothers against decapentaplegic homolog (SMAD) 3 and expression of SMAD7, indicating effective downstream signal transduction in valvular tissue. Thus, TGF-β1 increased VIC contents of rough endoplasmic reticulum, Golgi, and secretory vesicles as well as tissue levels of RNA and protein. In addition, TGF-β1 raised expression of proliferation marker cyclin D1, attenuated VIC apoptosis, and upregulated VIC density. Moreover, TGF-β1 intensified myofibroblastic VIC differentiation as evidenced by increased α-smooth muscle actin and collagen type I along with diminished vimentin expression. In contrast, TGF-β1 attenuated phosphorylation of SMAD1/5/8 and upregulation of β-catenin while inhibiting osteoblastic VIC differentiation as revealed by downregulation of osteocalcin expression, alkaline phosphatase activity, and extracellular matrix incorporation of hydroxyapatite. Collectively, these effects resulted in blocking of valvular tissue calcification and associated disintegration of collagen fibers. Instead, TGF-β1 induced development of fibrosis. Overall, in a tissue-based 3-D CAVD model, TGF-β1 intensifies expressional and proliferative activation along with myofibroblastic differentiation of VICs, thus triggering dominant fibrosis. Simultaneously, by inhibiting SMAD1/5/8 activation and canonical Wnt/β-catenin signaling, TGF-β1 attenuates osteoblastic VIC differentiation, thus blocking valvular tissue calcification. These findings question a general phase-independent CAVD-promoting role of TGF-β1.NEW & NOTEWORTHY Employing aortic valve leaflets as a tissue-based three-dimensional disease model, our study investigates the role of transforming growth factor (TGF)-β1 in calcific aortic valve disease pathogenesis. We find that, by activating Mothers against decapentaplegic homolog 3, TGF-β1 intensifies expressional and proliferative activation along with myofibroblastic differentiation of valvular interstitial cells, thus triggering dominant fibrosis. Simultaneously, by inhibiting activation of Mothers against decapentaplegic homolog 1/5/8 and canonical Wnt/β-catenin signaling, TGF-β1 attenuates apoptosis and osteoblastic differentiation of valvular interstitial cells, thus blocking valvular tissue calcification. These findings question a general phase-independent calcific aortic valve disease-promoting role of TGF-β1.
Keyphrases
- transforming growth factor
- aortic valve
- epithelial mesenchymal transition
- transcatheter aortic valve replacement
- aortic valve replacement
- transcatheter aortic valve implantation
- aortic stenosis
- signaling pathway
- poor prognosis
- cell cycle arrest
- atrial fibrillation
- induced apoptosis
- stem cells
- chronic kidney disease
- cell proliferation
- binding protein
- smooth muscle
- extracellular matrix
- endoplasmic reticulum
- magnetic resonance imaging
- magnetic resonance
- machine learning
- heart failure
- endothelial cells
- computed tomography
- artificial intelligence
- left ventricular
- long non coding rna
- protein protein
- high resolution
- small molecule
- high glucose
- pi k akt
- electronic health record
- drug induced