Distinguishing methicillin-resistant Staphylococcus aureus from methicillin-sensitive strains by combining Fe 3 O 4 magnetic nanoparticle-based affinity mass spectrometry with a machine learning strategy.
Wei-Hsiang MaChe-Chia ChangTe-Sheng LinYu-Chie ChenPublished in: Mikrochimica acta (2024)
Pathogenic bacteria, including drug-resistant variants such as methicillin-resistant Staphylococcus aureus (MRSA), can cause severe infections in the human body. Early detection of MRSA is essential for clinical diagnosis and proper treatment, considering the distinct therapeutic strategies for methicillin-sensitive S. aureus (MSSA) and MRSA infections. However, the similarities between MRSA and MSSA properties present a challenge in promptly and accurately distinguishing between them. This work introduces an approach to differentiate MRSA from MSSA utilizing matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) in conjunction with a neural network-based classification model. Four distinct strains of S. aureus were utilized, comprising three MSSA strains and one MRSA strain. The classification accuracy of our model ranges from ~ 92 to ~ 97% for each strain. We used deep SHapley Additive exPlanations to reveal the unique feature peaks for each bacterial strain. Furthermore, Fe 3 O 4 MNPs were used as affinity probes for sample enrichment to eliminate the overnight culture and reduce the time in sample preparation. The limit of detection of the MNP-based affinity approach toward S. aureus combined with our machine learning strategy was as low as ~ 8 × 10 3 CFU mL -1 . The feasibility of using the current approach for the identification of S. aureus in juice samples was also demonstrated.
Keyphrases
- methicillin resistant staphylococcus aureus
- machine learning
- mass spectrometry
- staphylococcus aureus
- drug resistant
- capillary electrophoresis
- deep learning
- neural network
- escherichia coli
- liquid chromatography
- artificial intelligence
- multidrug resistant
- high resolution
- acinetobacter baumannii
- endothelial cells
- big data
- multiple sclerosis
- early onset
- small molecule
- gene expression
- ms ms
- molecularly imprinted
- single molecule
- fluorescence imaging
- pseudomonas aeruginosa
- nucleic acid
- induced pluripotent stem cells
- fluorescent probe
- pluripotent stem cells
- smoking cessation