Interferon-Stimulated Genes-Mediators of the Innate Immune Response during Canine Distemper Virus Infection.
Daniela KlotzIngo GerhauserPublished in: International journal of molecular sciences (2019)
The demyelinating canine distemper virus (CDV)-leukoencephalitis represents a translational animal model for multiple sclerosis. The present study investigated the expression of type I interferon (IFN-I) pathway members in CDV-induced cerebellar lesions to gain an insight into their role in lesion development. Gene expression of 110 manually selected genes in acute, subacute and chronic lesions was analyzed using pre-existing microarray data. Interferon regulatory factor (IRF) 3, IRF7, signal transducer and activator of transcription (STAT) 1, STAT2, MX protein, protein kinase R (PKR), 2'-5'-oligoadenylate synthetase (OAS) 1 and interferon-stimulated gene (ISG) 15 expression were also evaluated using immunohistochemistry. Cellular origin of STAT1, STAT2, MX and PKR were determined using immunofluorescence. CDV infection caused an increased expression of the antiviral effector proteins MX, PKR, OAS1 and ISG15, which probably contributed to a restricted viral replication, particularly in neurons and oligodendrocytes. This increase might be partly mediated by IRF-dependent pathways due to the lack of changes in IFN-I levels and absence of STAT2 in astrocytes. Nevertheless, activated microglia/macrophages showed a strong expression of STAT1, STAT2 and MX proteins in later stages of the disease, indicating a strong activation of the IFN-I signaling cascade, which might be involved in the aggravation of bystander demyelination.
Keyphrases
- dendritic cells
- poor prognosis
- cell proliferation
- gene expression
- multiple sclerosis
- immune response
- genome wide
- binding protein
- regulatory t cells
- dna methylation
- transcription factor
- protein kinase
- genome wide identification
- long non coding rna
- mass spectrometry
- big data
- data analysis
- acute respiratory distress syndrome