Login / Signup

Lipase Immobilized on a Novel Rigid-Flexible Dendrimer-Grafted Hierarchically Porous Magnetic Microspheres for Effective Resolution of (R,S)-1-Phenylethanol.

Jianhua WangKai LiYaojia HeYao WangJinyong YanLi XuXiaotao HanYunjun Yan
Published in: ACS applied materials & interfaces (2020)
With the rapid development of biotechnological industry, there is an urgent need for exploiting new materials to immobilize enzymes to improve the performance of biocatalysts. In this paper, hierarchically porous magnetic microspheres (PFMMs) were prepared through solvothermal method and rapidly grafted with a novel rigid-flexible dendrimer first synthesized from monomers of trimesoyl chloride (TMC) and 1,6-hexanediamine (HDA) via interfacial polymerization process for covalent immobilization of Pseudomonas fluorescens lipase (PFL). The maximum PFL loading of the synthesized support reaches 87.5 mgprotein/gsupport, and 864% activity recovery of PFMMs-G3.0-PFL can be achieved at pH 9.0. Then, it was used to catalyze the resolution of (R,S)-1-phenylethanol with vinyl acetate. Under the optimized conditions, 50.0% conversion with 99.0% ees can be reached within 1.5 h. In addition, a conversion of 49.2% and ees of 96.9% can be retained after 10 batches of running, displaying an excellent operational stability. Importantly, a further investigation shows that the obviously improved reusability of the immobilized PFL is ascribed to the increased rigidity in comparison to fully flexible dendrimer. Thus, the newly constructed protocol for lipase immobilization exhibits a great prospect in biochemical engineering.
Keyphrases