TREML4 receptor regulates inflammation and innate immune cell death during polymicrobial sepsis.
Christina NedevaJoseph MenassaMubing DuanChuanxin LiuMarcel DoerflingerAndrew J KuehMarco J HeroldPamali FonsekaThanh Kha PhanPierre FaouHarinda RajapakshaWeisan ChenMark D HulettHamsa PuthalakathPublished in: Nature immunology (2020)
Sepsis is a biphasic disease characterized by an acute inflammatory response, followed by a prolonged immunosuppressive phase. Therapies aimed at controlling inflammation help to reduce the time patients with sepsis spend in intensive care units, but they do not lead to a reduction in overall mortality. Recently, the focus has been on addressing the immunosuppressive phase, often caused by apoptosis of immune cells. However, molecular triggers of these events are not yet known. Using whole-genome CRISPR screening in mice, we identified a triggering receptor expressed on myeloid cells (TREM) family receptor, TREML4, as a key regulator of inflammation and immune cell death in sepsis. Genetic ablation of Treml4 in mice demonstrated that TREML4 regulates calcium homeostasis, the inflammatory cytokine response, myeloperoxidase activation, the endoplasmic reticulum stress response and apoptotic cell death in innate immune cells, leading to an overall increase in survival rate, both during the acute and chronic phases of polymicrobial sepsis.
Keyphrases
- cell death
- cell cycle arrest
- intensive care unit
- oxidative stress
- septic shock
- acute kidney injury
- inflammatory response
- endoplasmic reticulum
- liver failure
- induced apoptosis
- innate immune
- immune response
- genome wide
- respiratory failure
- high fat diet induced
- mechanical ventilation
- acute myeloid leukemia
- lipopolysaccharide induced
- cardiovascular events
- dna methylation
- endoplasmic reticulum stress
- genome editing
- hepatitis b virus
- metabolic syndrome
- insulin resistance
- risk factors
- coronary artery disease
- skeletal muscle
- atrial fibrillation
- binding protein
- radiofrequency ablation
- extracorporeal membrane oxygenation
- anti inflammatory