Food-Borne Polycyclic Aromatic Hydrocarbons and Circadian Disruption.
Yen-Chun KohMin-Hsiung PanPublished in: ACS omega (2024)
Circadian disruption has been found to increase the risk of metabolic diseases, brain disorders, and cancer. The aryl hydrocarbon receptor (AhR), responsible for xenobiotic metabolism, is known to be activated by certain environmental stimuli, including polycyclic aromatic hydrocarbons (PAHs). Exposure to these stimuli may lead to diseases related to circadian disruption, with AhR activation suggested as a leading cause. Both the aryl hydrocarbon receptor nuclear translocator (ARNT) and aryl hydrocarbon receptor nuclear translocator-like (BMAL1) are class II basic helix-loop-helix/Per-ARNT-SIM (bHLH-PAS) proteins. These proteins form heterodimers with stimulated class I bHLH-PAS proteins, including circadian locomotor output cycles kaput (CLOCK) and AhR. Due to their sequential similarity, the overactivation of AhR by toxicants, such as PAHs, may lead to the formation of heterodimers with BMAL1, potentially causing circadian disruption. Dysregulation of BMAL1 can affect a wide range of metabolic genes, emphasizing its crucial roles. However, this issue has not been adequately addressed. Previous studies have reported that the inhibitory effects of phytochemicals on AhR activation can ameliorate diseases induced by environmental toxicants. Additionally, some phytochemicals have shown preventive effects on circadian misalignment. Therefore, this Review aims to explore potential strategies to prevent circadian disruption induced by food-borne toxicants, such as benzo[ a ]pyrene; to generate new ideas for future studies; and to highlight the importance of investigating these preventive strategies.