Spatial and Temporal Dynamics of Mal Secco Disease Spread in Lemon Orchards in Israel.
Miriam Ben-HamoDavid EzraHelena KrasnovLior BlankPublished in: Phytopathology (2020)
Mal Secco is a severe disease of citrus in which the fungus Plenodomus tracheiphilus (formerly Phoma tracheiphila) penetrates the vascular system of the host. In this study, we characterized the spatial dynamics of the disease in seven lemon orchards. A representative block of trees from each orchard was evaluated monthly during 3 consecutive years. In addition, scouts assessed disease severity in 75 orchards from three different geographical regions and tested for association between disease severity and measures of orchard management, environmental factors, cultural practices, and cultivar type. We assessed disease incidence and characteristics of spatial patterns using Ripley's K function and fitted logistic regression models for different neighboring tree structures followed by model selection methods to provide insight into the spatial and temporal dynamics of disease progress. We found different rates of disease spread in different orchards, which are most likely the result of differences in orchard management practices or less likely the result of differences in climatic conditions. There was an indication that agricultural tools contribute to spread of the disease within rows of trees. The results confirm that the lemon cultivar Interdonato is less susceptible compared with other citrus cultivars, and they suggest that the density of urban terrain surrounding each orchard is positively correlated with the severity of the disease. In contrast to our expectations, no correlation was found between the density of lemon orchards surrounding an orchard and the severity of the disease within it, which corroborates previous findings regarding the limited distribution of the disease.