Login / Signup

Genome-wide analysis of PYL-PP2C-SnRK2s family in Camellia sinensis.

Ping XuXueying ZhangHui SuXiaofen LiuYuefei WangGaojie Hong
Published in: Bioengineered (2020)
Abscisic acid (ABA) signaling regulates plant growth and development and participates in response to abiotic stressors. However, details about the PYL-PP2C-SnRK2 gene family, which is the core component of ABA signaling in Camellia sinensis, are unknown. In this work, we identified 14 pyrabactin resistance-likes (PYLs), 84 type 2C protein phosphatase (PP2Cs), and 8 SNF1-related protein kinase 2s (SnRK2s) from C. sinensis. The transcriptomic analysis indicated that PYL-PP2C-SnRK2s were associated with changes of leaf color and the response of C. sinensis to drought and salt stressors. Changes of the expression of Snrk2s were not significant in the process of leaf color change or drought and salt stress response, suggesting that PYLs and PP2Cs may not interact with SnRK2s in C. sinensis during these processes. Finally, Gene Regulatory Network (GRN) construction and interaction networks analysis demonstrated that PYLs and PP2Cs were associated with multiple metabolic pathways during the changes of leaf color.
Keyphrases
  • plant growth
  • arabidopsis thaliana
  • protein kinase
  • genome wide analysis
  • transcription factor
  • climate change
  • poor prognosis
  • small molecule
  • long non coding rna
  • drug induced