Login / Signup

Non-Watson-Crick RNA synthesis suited to origin functions.

Deepa PuthenveduIrene MajerfeldMichael Yarus
Published in: RNA (New York, N.Y.) (2017)
A templated RNA synthesis is characterized in which G5'pp5'G accelerates synthesis of A5'pp5'A from pA and chemically activated ImpA precursors. Similar acceleration is not observable in the presence of UppU, CppC, AppG, AppA, or pG alone. Thus, it seems likely that AppA is templated by GppG via a form or forms of G:A base-pairing. AppA also appears, more slowly, via a previously known untemplated second-order chemical route. Such AppA synthesis requires only ordinary near-neutral solutions containing monovalent and divalent salts, and rates are only slightly sensitive to variation in pH. Templated synthesis rates are first order in pA, ImpA, and template GppG; thus third order overall. Therefore, this reaction resembles cross-templating of AppA on poly(U), but is notably slower and less sensitive to temperature. Viewing AppA as a coenzyme analog, GppG templating provides a simpler molecular route, termed para-templating, to encoded chemical functions. Para-templating can also arise from a single, localized nucleobase geosynthetic event which yields purines. It requires only a single backbone-forming chemistry. Thus it may have appeared earlier and served as evolutionary precursor for more complex forms of encoded genetic expression.
Keyphrases
  • poor prognosis
  • genome wide
  • dna methylation
  • mass spectrometry
  • ionic liquid
  • copy number
  • long non coding rna