Cloning, expression, and characterization of an arabitol dehydrogenase and coupled with NADH oxidase for effective production of L-xylulose.
Chen-Yuan ZhuYi-Hao ZhuHua-Ping ZhouYuan-Yuan XuJian GaoYe-Wang ZhangPublished in: Preparative biochemistry & biotechnology (2021)
A novel arabitol dehydrogenase (ArDH) gene was cloned from a bacterium named Aspergillus nidulans and expressed heterologously in Escherichia coli. The purified ArDH exhibited the maximal activity in pH 9.5 Tris-HCl buffer at 40 °C, showed Km and Vmax of 1.2 mg/mL and 9.1 U/mg, respectively. The ArDH was used to produce the L-xylulose and coupled with the NADH oxidase (Nox) for the regeneration of NAD+. In further optimization, a high conversion of 84.6% in 8 hours was achieved under the optimal conditions: 20 mM of xylitol, 100 µM NAD+ in pH 9.0 Tris-HCl buffer at 30 °C. The results indicated the coupling system with cofactor regeneration provides a promising approach for L-xylulose production from xylitol.