Comparative profiling of cortical gene expression in Alzheimer's disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation.
Erika CastilloJulio LeonGuianfranco MazzeiNona AbolhassaniNaoki HaruyamaTakashi SaitoTakaomi SaidoMasaaki HokamaToru IwakiTomoyuki OharaToshiharu NinomiyaYutaka KiyoharaKunihiko SakumiFrank M LaFerlaYusaku NakabeppuPublished in: Scientific reports (2017)
Alzheimer's disease (AD) is the most common form of dementia, characterized by accumulation of amyloid β (Aβ) and neurofibrillary tangles. Oxidative stress and inflammation are considered to play an important role in the development and progression of AD. However, the extent to which these events contribute to the Aβ pathologies remains unclear. We performed inter-species comparative gene expression profiling between AD patient brains and the App NL-G-F/NL-G-F and 3xTg-AD-H mouse models. Genes commonly altered in App NL-G-F/NL-G-F and human AD cortices correlated with the inflammatory response or immunological disease. Among them, expression of AD-related genes (C4a/C4b, Cd74, Ctss, Gfap, Nfe2l2, Phyhd1, S100b, Tf, Tgfbr2, and Vim) was increased in the App NL-G-F/NL-G-F cortex as Aβ amyloidosis progressed with exacerbated gliosis, while genes commonly altered in the 3xTg-AD-H and human AD cortices correlated with neurological disease. The App NL-G-F/NL-G-F cortex also had altered expression of genes (Abi3, Apoe, Bin2, Cd33, Ctsc, Dock2, Fcer1g, Frmd6, Hck, Inpp5D, Ly86, Plcg2, Trem2, Tyrobp) defined as risk factors for AD by genome-wide association study or identified as genetic nodes in late-onset AD. These results suggest a strong correlation between cortical Aβ amyloidosis and the neuroinflammatory response and provide a better understanding of the involvement of gender effects in the development of AD.
Keyphrases
- oxidative stress
- genome wide
- gene expression
- late onset
- inflammatory response
- endothelial cells
- poor prognosis
- mouse model
- end stage renal disease
- genome wide identification
- traumatic brain injury
- chronic kidney disease
- multiple myeloma
- squamous cell carcinoma
- cognitive decline
- ejection fraction
- radiation therapy
- early onset
- lipopolysaccharide induced
- high fat diet
- adipose tissue
- early stage
- metabolic syndrome
- cognitive impairment
- mild cognitive impairment
- type diabetes
- copy number
- rectal cancer
- subarachnoid hemorrhage
- patient reported outcomes