Login / Signup

Mesoporous Silica as Sorbents and Enzymatic Nanoreactors for Microbial Membrane Proteomics.

Jinzhi ZhaoRuijun JianYuning WangBeibei YangDan ZhaoChengpin ShenLiang QiaoBao-Hong Liu
Published in: ACS applied materials & interfaces (2021)
The membrane proteins of microbes are at the forefront of host and parasite interactions. Having a general view of the functions of microbial membrane proteins is vital for many biomedical studies on microbiota. Nevertheless, due to the strong hydrophobicity and low concentration of membrane proteins, it is hard to efficiently enrich and digest the proteins for mass spectrometry analysis. Herein, we design an enzymatic nanoreactor for the digestion of membrane proteins using methylated well-ordered hexagonal mesoporous silica (Met-SBA-15). The material can efficiently extract hydrophobic membrane proteins and host the proteolysis in nanopores. The performance of the enzymatic nanoreactor is first demonstrated using standard hydrophobic proteins and then validated using membrane proteins extracted from Escherichia coli (E. coli) or a mixed bacterial sample of eight strains. Using the nanoreactor, 431 membrane proteins are identified from E. coli, accounting for 38.5% of all membrane proteins of the species, which is much more than that by the widely used in-solution digestion protocol. From the mixed bacterial sample of eight strains, 1395 membrane proteins are identified using the nanoreactor. On the contrary, the traditional in-solution proteolysis workflow only leads to the identification of 477 membrane proteins, demonstrating that the Met-SBA-15 can be offered as an excellent tool for microbial membrane proteome research and is expected to be used in human microbiota studies, e.g. host-microbe interactions.
Keyphrases