Login / Signup

A systematic evaluation of single cell RNA-seq analysis pipelines.

Beate ViethSwati ParekhChristoph ZiegenhainWolfgang EnardInes Hellmann
Published in: Nature communications (2019)
The recent rapid spread of single cell RNA sequencing (scRNA-seq) methods has created a large variety of experimental and computational pipelines for which best practices have not yet been established. Here, we use simulations based on five scRNA-seq library protocols in combination with nine realistic differential expression (DE) setups to systematically evaluate three mapping, four imputation, seven normalisation and four differential expression testing approaches resulting in ~3000 pipelines, allowing us to also assess interactions among pipeline steps. We find that choices of normalisation and library preparation protocols have the biggest impact on scRNA-seq analyses. Specifically, we find that library preparation determines the ability to detect symmetric expression differences, while normalisation dominates pipeline performance in asymmetric DE-setups. Finally, we illustrate the importance of informed choices by showing that a good scRNA-seq pipeline can have the same impact on detecting a biological signal as quadrupling the sample size.
Keyphrases
  • single cell
  • rna seq
  • high throughput
  • poor prognosis
  • primary care
  • healthcare
  • high resolution
  • molecular dynamics
  • gene expression
  • dna methylation
  • high density
  • mass spectrometry
  • genome wide
  • solid phase extraction