Login / Signup

Interaction of Zwitterionic Osmolyte Trimethylamine N-oxide (TMAO) with Molecular Hydrophobes: An Interplay of Hydrophobic and Electrostatic Interactions.

Subhadip RoyAnimesh PatraDipak K PalitJahur Alam Mondal
Published in: The journal of physical chemistry. B (2021)
Interaction of trimethylamine N-oxide (TMAO) with charged/uncharged moieties of proteins and lipids is an important elementary step toward the multifaceted biofunctions of TMAO. Using minimum area Raman difference spectroscopy (MA-RDS) of aqueous TMAO (1.0 M) in the presence of deuterated molecular hydrophobes (e.g., deuterated tetramethylammonium cation (d-TMA+) and tert-butylalcohol (d-TBA)), we show that TMAO exhibits two distinct motifs of interaction with the cationic (d-TMA+) and uncharged (d-TBA) hydrophobes. Specifically, the trimethylammonium moiety of TMAO undergoes van der Waals attraction with the tert-butyl group of d-TBA, which is governed by their mutual hydrophobic interaction with water. This makes their methyl groups less exposed to water. In contrast, for the cationic hydrophobe (d-TMA+), TMAO interacts electrostatically via its negatively charged-oxygen, which in turn orients the TMAO-methyls away from the hydrophobe (d-TMA+), keeping them exposed to water.
Keyphrases
  • ionic liquid
  • single molecule
  • magnetic resonance
  • high resolution
  • magnetic resonance imaging
  • mass spectrometry
  • fluorescent probe
  • molecular dynamics simulations
  • living cells
  • fatty acid
  • raman spectroscopy