Examining the Capacity of Text Mining and Software Metrics in Vulnerability Prediction.
Ilias KalouptsoglouMiltiadis SiavvasDionysios KehagiasAlexandros ChatzigeorgiouApostolos AmpatzoglouPublished in: Entropy (Basel, Switzerland) (2022)
Software security is a very important aspect for software development organizations who wish to provide high-quality and dependable software to their consumers. A crucial part of software security is the early detection of software vulnerabilities. Vulnerability prediction is a mechanism that facilitates the identification (and, in turn, the mitigation) of vulnerabilities early enough during the software development cycle. The scientific community has recently focused a lot of attention on developing Deep Learning models using text mining techniques for predicting the existence of vulnerabilities in software components. However, there are also studies that examine whether the utilization of statically extracted software metrics can lead to adequate Vulnerability Prediction Models. In this paper, both software metrics- and text mining-based Vulnerability Prediction Models are constructed and compared. A combination of software metrics and text tokens using deep-learning models is examined as well in order to investigate if a combined model can lead to more accurate vulnerability prediction. For the purposes of the present study, a vulnerability dataset containing vulnerabilities from real-world software products is utilized and extended. The results of our analysis indicate that text mining-based models outperform software metrics-based models with respect to their F 2 -score, whereas enriching the text mining-based models with software metrics was not found to provide any added value to their predictive performance.