Previously, we developed a simple procedure of intracameral injection of silicone oil (SO) into mouse eyes and established the mouse SOHU (SO-induced ocular hypertension under-detected) glaucoma model with reversible intraocular pressure (IOP) elevation and significant glaucomatous neurodegeneration. Because the anatomy of the non-human primate (NHP) visual system closely resembles that of humans, it is the most likely to predict human responses to diseases and therapies. Here we tried to replicate the mouse SOHU glaucoma model in rhesus macaque monkeys. All six animals that we tested showed significant retinal ganglion cell (RGC) death, optic nerve (ON) degeneration, and visual functional deficits at both 3 and 6 months. In contrast to the mouse SOHU model, however, IOP changed dynamically in these animals, probably due to individual differences in ciliary body tolerance capability. Further optimization of this model is needed to achieve consistent IOP elevation without permanent damage of the ciliary body. The current form of the NHP SOHU model recapitulates the severe degeneration of acute human glaucoma, and is therefore suitable for assessing experimental therapies for neuroprotection and regeneration, and therefore for translating relevant findings into novel and effective treatments for patients with glaucoma and other neurodegenerations.
Keyphrases
- optic nerve
- endothelial cells
- optical coherence tomography
- high glucose
- stem cells
- blood pressure
- oxidative stress
- drug induced
- traumatic brain injury
- magnetic resonance
- diabetic rats
- computed tomography
- bone marrow
- mesenchymal stem cells
- liver failure
- fatty acid
- minimally invasive
- brain injury
- early onset
- single cell
- acute respiratory distress syndrome
- hepatitis b virus
- wound healing
- extracorporeal membrane oxygenation