Login / Signup

Bioconversion of food waste to crayfish feed using solid-state fermentation with yeast.

Qinping LiPuhong YiJianze ZhangYudong ShanYongfeng LinMing WuKun WangGuangming TianJi LiTingheng Zhu
Published in: Environmental science and pollution research international (2022)
In order to realize the value-added utilization of food waste (FW), the preparation of crayfish (Procambarus clarkii) feed by yeast fermentation was investigated. Firstly, the suitable fermentation condition was obtained through a single factor experiment as follows: the initial moisture of the FW was adjusted to 60% with bran and inoculated with a 2% yeast mixture (Saccharomyces cerevisiae, Candida utilis, and Yarrowia lipolytica, 3:2:1) followed by aerobic solid-state fermentation for 7 days. The crude protein and acid-soluble protein contents in the fermented feed were 25.14% and 5.16%, which were increased by 8% and 140.67%, respectively. The crude fat content was 0.74%, decreased by 68.29%. The content of antioxidant glutathione (571.78 μg/g) increased 63.33%, and the activities of protease and amylase increased nearly 9 and 3 times, respectively. The maximum degradation rates of aflatoxin B1, zearalenone, and deoxynivalenol were 63.83%, 77.52%, and 80.16%, respectively. The fermented feeds were evaluated by substituting (0%, 10%, 30%, 50%, and 100%) commercial diet for crayfish (30-day culture period). When the replacement proportion was 30%, the weight gain of crayfish reached 44.87% (initial body weight 13.98 ± 0.41 g), which was significantly increased by 10.25% compared with the control (p = 0.0005). In addition, the lysozyme and SOD enzyme activities in crayfish hepatopancreas were also increased significantly. Our findings suggest that yeast-fermented feed from FW can replace 30% of crayfish's conventional diet, which may improve crayfish's antioxidant capacity and enhance non-specific immunity by providing molecules such as glutathione.
Keyphrases