Incorporating historical information to improve phase I clinical trials.
Yanhong ZhouJiun-Kae Jack LeeShunguang WangStuart BaileyYing YuanPublished in: Pharmaceutical statistics (2021)
Incorporating historical data has a great potential to improve the efficiency of phase I clinical trials and to accelerate drug development. For model-based designs, such as the continuous reassessment method (CRM), this can be conveniently carried out by specifying a "skeleton," that is, the prior estimate of dose limiting toxicity (DLT) probability at each dose. In contrast, little work has been done to incorporate historical data into model-assisted designs, such as the Bayesian optimal interval (BOIN), Keyboard, and modified toxicity probability interval (mTPI) designs. This has led to the misconception that model-assisted designs cannot incorporate prior information. In this paper, we propose a unified framework that allows for incorporating historical data into model-assisted designs. The proposed approach uses the well-established "skeleton" approach, combined with the concept of prior effective sample size, thus it is easy to understand and use. More importantly, our approach maintains the hallmark of model-assisted designs: simplicity-the dose escalation/de-escalation rule can be tabulated prior to the trial conduct. Extensive simulation studies show that the proposed method can effectively incorporate prior information to improve the operating characteristics of model-assisted designs, similarly to model-based designs.