Login / Signup

Possible Metabolic Alterations among Autistic Male Children: Clinical and Biochemical Approaches.

Mohammed H HassanTarek DesokyHala M SakhrRomany H GabraAli Helmi Bakri
Published in: Journal of molecular neuroscience : MN (2019)
The present cross-sectional, hospital-based study was carried out on 146 Egyptian male children, 73 males with autism who were comparable with another 73 healthy age- and sex-matched children, recruited from the outpatients' psychiatric clinics of the Neuropsychiatric and Pediatric Departments of South Valley and Assiut University Hospitals, Egypt. Neuropsychological assessments of autistic males were done using CARS, short sensory profile and intelligent quotients. Serum markers of mitochondrial dysfunction (lactate, pyruvate, and lactate to pyruvate ratio, creatine kinase (CK), L-carnitine, ammonia, lactate dehydrogenase, pyruvate kinase, alanine transaminase and aspartate transaminase), oxidative stress and blood levels of heavy metals (mercury, lead and aluminium) were measured. Serum cholesterol, cortisol, free testosterone, estradiol, dehydroepiandrostenedione, adenosine deaminase and Helicobacter pylori antigen in stool were also performed. There was evidence of mitochondrial dysfunction among autistic children. Additionally, there were significantly lower serum total cholesterol, cortisol and estradiol as well as significantly higher dehydroepiandrostenedione (DHEA) and free testosterone (p < 0.05 for all markers). Twenty-eight (38%) cases were positive for H. pylori antigen in their stool with significant higher serum ammonia and lower adenosine deaminase than in H. pylori-negative autistic children. Mitochondrial dysfunction, H. pylori infection and low cholesterol were prevalent among autistic male children, which should be targeted during autism management.
Keyphrases
  • helicobacter pylori
  • young adults
  • autism spectrum disorder
  • cross sectional
  • heavy metals
  • healthcare
  • primary care
  • protein kinase
  • mental health
  • cancer therapy
  • endoplasmic reticulum stress
  • heat stress