Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data.
Savvas KinalisFinn Cilius NielsenOle WintherFrederik Otzen BaggerPublished in: BMC bioinformatics (2019)
We discover that tailored training of an autoencoder makes it possible to deconvolute biological modules inherent in the data, without any assumptions. By comparisons with gene signatures of canonical pathways we see that the modules are directly interpretable. The scope of this discovery has important implications, as it makes it possible to outline the drivers behind a given effect of a cell. In comparison with other dimensionality reduction methods, or supervised models for classification, our approach has the benefit of both handling well the zero-inflated nature of scRNA-seq, and validating that the model captures relevant information, by establishing a link between input and decoded data. In perspective, our model in combination with clustering methods is able to provide information about which subtype a given single cell belongs to, as well as which biological functions determine that membership.