Novel and Innovative Interface as Potential Active Layer in Chem-FET Sensor Devices for the Specific Sensing of Cs.
Volkan KilincCatherine Henry-de-VilleneuveTin Phan NguyYutaka WakayamaAnne M CharrierJean-Manuel RaimundoPublished in: ACS applied materials & interfaces (2019)
An innovative novel interface has been designed and developed to be used as a potential active layer in chemically sensitive field-effect transistor (Chem-FET) sensor devices for the specific sensing of Cs+. In this study, the synthesis of a specific Cs+ probe based on calix[4]arene benzocrown ether, its photophysical properties, and its grafting onto a single lipid monolayer (SLM) recently used as an efficient ultrathin organic dielectric in Chem-FETs are reported simultaneously. On the basis of both optical and NMR titration experiments, the probe has shown high selectivity and specificity for Cs+ compared to interfering cations, even if an admixture is used. Additionally, Attenuated Total Reflectance Fourier Transform Infra Red (ATR-FTIR) spectroscopy was successfully used to characterize and prove the efficient grafting of the probe onto a SLM and the formation of the innovative novel sensing layer.