Login / Signup

A Decade in a Systematic Review: The Evolution and Impact of Cell Painting.

Srijit SealMaria-Anna TrapotsiOla SpjuthShantanu SinghJordi Carreras-PuigvertNigel GreeneAndreas BenderAnne E Carpenter
Published in: bioRxiv : the preprint server for biology (2024)
High-content image-based assays have fueled significant discoveries in the life sciences in the past decade (2013-2023), including novel insights into disease etiology, mechanism of action, new therapeutics, and toxicology predictions. Here, we systematically review the substantial methodological advancements and applications of Cell Painting. Advancements include improvements in the Cell Painting protocol, assay adaptations for different types of perturbations and applications, and improved methodologies for feature extraction, quality control, and batch effect correction. Moreover, machine learning methods recently surpassed classical approaches in their ability to extract biologically useful information from Cell Painting images. Cell Painting data have been used alone or in combination with other - omics data to decipher the mechanism of action of a compound, its toxicity profile, and many other biological effects. Overall, key methodological advances have expanded Cell Painting's ability to capture cellular responses to various perturbations. Future advances will likely lie in advancing computational and experimental techniques, developing new publicly available datasets, and integrating them with other high-content data types.
Keyphrases
  • single cell
  • machine learning
  • cell therapy
  • healthcare
  • electronic health record
  • oxidative stress
  • rna seq
  • high throughput
  • small molecule
  • social media
  • artificial intelligence
  • convolutional neural network