Login / Signup

The yeast community of Conotelus sp. (Coleoptera: Nitidulidae) in Brazilian passionfruit flowers (Passiflora edulis) and description of Metschnikowia amazonensis sp. nov., a large-spored clade yeast.

Ana Raquel de Oliveira SantosDong Kyung LeeAndressa Graebin FerreiraMarina Conceição do CarmoVando Miossi RondelliKatharina O BarrosTom HsiangCarlos A RosaMarc-André Lachance
Published in: Yeast (Chichester, England) (2020)
Species of the nitidulid beetle Conotelus found in flowers of Convolvulaceae and other plants across the New World and in Hawaii consistently harbour a yeast community dominated by one or more large-spored Metschnikowia species. We investigated the yeasts found in beetles and flowers of cultivated passionfruit in Rondônia state, in the Amazon biome of Brazil, where a Conotelus species damages the flowers and hinders fruit production. A sample of 46 beetles and 49 flowers yielded 86 and 83 yeast isolates, respectively. Whereas the flower community was dominated by Kodamaea ohmeri and Kurtzmaniella quercitrusa, the major yeasts recovered from beetles were Wickerhamiella occidentalis, which is commonly isolated from this community, and a novel species of large-spored Metschnikowia in the arizonensis subclade, which we describe here as Metschnikowia amazonensis sp. nov. Phylogenetic analyses based on barcode sequences (ITS-D1/D2) and a multigene alignment of 11,917 positions (genes ura2, msh6, and pmt2) agreed to place the new species as a sister to Metschnikowia arizonensis, a rare species known only from one locality in Arizona. The two form sterile asci when mated, which is typical of related members of the clade. The α pheromone of the new species is unique but typical of the subclade. The type of M. amazonensis sp. nov. is UFMG-CM-Y6309T (ex-type CBS 16156T , mating type a), and the designated allotype (mating type α) is UFMG-CM-Y6307A (CBS 16155A ). MycoBank MB 833560.
Keyphrases
  • saccharomyces cerevisiae
  • healthcare
  • mental health
  • genetic diversity
  • gene expression
  • transcription factor
  • dna methylation
  • high resolution
  • single molecule
  • drug induced