Personalized dosimetry of177Lu-DOTATATE: a comparison of organ- and voxel-level approaches using open-access images.
Lukas Michael CarterJ C Ocampo RamosAdam Leon KesnerPublished in: Biomedical physics & engineering express (2021)
177Lu-DOTATATE (Lutathera®) enables targeted radionuclide therapy of neuroendocrine tumors expressing somatostatin receptor type 2. Though patient-specific dosimetry estimates may be clinically important for predicting absorbed dose-effect relationships, there are multiple relevant dosimetry paradigms which are distinct in terms of clinical effort, numerical output and added-value. This work compares three different approaches for177Lu-DOTATATE dosimetry, including 1) an organ-level approach based on reference phantom MIRD S-values scaled to patient-specific organ masses (MIRDcalc), 2) an organ-level approach based on Monte Carlo simulation in a patient-specific mesh phantoms (PARaDIM), and 3) a 3D approach based on Monte Carlo simulation in patient-specific voxel phantoms.Method. Serial quantitative SPECT/CT images for two patients receiving177Lu-DOTATATE therapy were obtained from archive in theDeep Bluedatabase. For each patient, the serial CT images were co-registered to the first time point CT using a deformable registration technique aided by virtual landmarks placed in the kidney pelves and the lesion foci. The co-registered SPECT images were integrated voxel-wise to generate time-integrated activity maps. Lesions, kidneys, liver, spleen, lungs, compact bone, spongiosa, and rest of body were segmented at the first imaging time point and overlaid on co-registered integrated activity maps. The resultant segmentation was used for three purposes: 1) to generate patient-specific phantoms, 2) to determine organ-level time-integrated activities, and 3) to generate dose volume histograms from 3D voxel-based calculations.Results. Mean absorbed doses were computed for lesions and 48 tissues with MIRDcalc software. Mean organ absorbed doses and dose volume histograms were obtained for lesions and 6 tissues with the voxel Monte Carlo approach. Lesion- and organ-level absorbed dose estimates agreed within ±26% for the lesions and ±13% for the critical organs, among the different methods tested. Overall good agreement was observed with the dosimetry estimates from the NETTER-1 trial.Conclusions. For personalized177Lu-DOTATATE dosimetry, a combined approach was determined to be valuable, which utilized two dose calculation methods supported by a single image processing workflow. In the absence of quantitative imaging limitations, the voxel Monte Carlo method likely provides valuable information to guide treatment by considering absorbed dose non-uniformity in lesions and organs at risk. The patient-scaled reference phantom method also provides valuable information, including absorbed dose estimates for non-segmented organs, and more accurate dose estimates for complex radiosensitive organs including the active marrow.
Keyphrases
- monte carlo
- neuroendocrine tumors
- pet ct
- deep learning
- convolutional neural network
- high resolution
- computed tomography
- magnetic resonance imaging
- clinical trial
- image quality
- gene expression
- randomized controlled trial
- contrast enhanced
- healthcare
- machine learning
- bone marrow
- positron emission tomography
- case report
- stem cells
- magnetic resonance
- cancer therapy
- mass spectrometry
- combination therapy
- fluorescence imaging
- open label
- molecular dynamics simulations
- electronic health record