Login / Signup

CuH-Catalyzed Enantioselective Alkylation of Indole Derivatives with Ligand-Controlled Regiodivergence.

Yuxuan YeSeoung-Tae KimJinhoon JeongMu-Hyun BaikStephen L Buchwald
Published in: Journal of the American Chemical Society (2019)
Enantioenriched molecules bearing indole-substituted stereocenters form a class of privileged compounds in biological, medicinal, and organic chemistry. Thus, the development of methods for asymmetric indole alkylation is highly valuable in organic synthesis. Traditionally, achieving N-selectivity in indole alkylation reactions is a significant challenge, since there is an intrinsic preference for alkylation at C3, the most nucleophilic position. Furthermore, selective and predictable access to either N- or C3-alkylated chiral indoles using catalyst control has been a long-standing goal in indole functionalization. Herein, we report a ligand-controlled regiodivergent synthesis of N- and C3-alkylated chiral indoles that relies on a polarity reversal strategy. In contrast to conventional alkylation reactions in which indoles are employed as nucleophiles, this transformation employs electrophilic indole derivatives, N-(benzoyloxy)indoles, as coupling partners. N- or C3-alkylated indoles are prepared with high levels of regio- and enantioselectivity using a copper hydride catalyst. The regioselectivity is governed by the use of either DTBM-SEGPHOS or Ph-BPE as the supporting ligand. Density functional theory (DFT) calculations are conducted to elucidate the origin of the ligand-controlled regiodivergence.
Keyphrases
  • density functional theory
  • room temperature
  • ionic liquid
  • molecular dynamics
  • highly efficient
  • mass spectrometry
  • hepatitis c virus
  • monte carlo