Evaluation of antioxidant activities and essential/toxicmetal levels and their health risk assessment in citrus fruits from Pakistan.
Khezina RafiqNazia ShaheenMunir Hussain ShahPublished in: Environmental monitoring and assessment (2019)
Fruits are important components of human diet, and their contamination by environmental pollutants is an emerging challenge nowadays. The present study is based on the measurement of selected essential and toxic trace metals including Na, K, Ca, Mg, Fe, Zn, Cu, Mn, Cr, Co, Sr, Li, Ni, Pb, and Cd in commercially available citrus fruits from Pakistan. The samples were digested in HNO3 and HCLO4 mixture, and the metal contents were quantified by flame atomic absorption spectrometry. Highest concentration was found for Ca (609.0-3596 mg/kg), followed by relatively higher levels of K (277.6-682.1 mg/kg), Mg (53.65-123.4 mg/kg), Na (1.173-52.14 mg/kg), and Fe (0.236-10.57 mg/kg), while Li, Ni, and Cd showed the lowest contributions in most of the samples. In addition, antioxidant activities such as DPPH radical scavenging assay, hydroxyl radical scavenging activity, ferrous chelating activity, ferric reducing antioxidant power assay, and phosphomolybdenum assay were also evaluated in the fruit samples. Considerably higher antioxidant activities were shown by grapefruit, mandarin, sweet lime, and tangerine. Most of the antioxidant assays were significantly correlated with Na, Mg, Fe, Mn, and Cu levels in the fruits. Human health risk was evaluated in terms of health risk index (HRI), target hazard quotient (THQ), and target cancer risk (TCR) which revealed insignificant health risks; thus, the consumption of these fruits can be considered as safe for human diet.
Keyphrases
- health risk
- heavy metals
- health risk assessment
- endothelial cells
- drinking water
- metal organic framework
- oxidative stress
- anti inflammatory
- high throughput
- physical activity
- aqueous solution
- sewage sludge
- pluripotent stem cells
- weight loss
- human health
- immune response
- high resolution
- climate change
- dendritic cells
- solid state