A role for sex-determination genes in life history evolution? Doublesex mediates sexual size dimorphism in the gazelle dung beetle.
Patrick Thomas RohnerPublished in: Journal of evolutionary biology (2021)
An organism's fitness depends strongly on its age and size at maturation. Although the evolutionary forces acting on these critical life history traits have been heavily scrutinized, the developmental mechanisms underpinning intraspecific variation in adult size and development time remain much less well-understood. Using RNA interference, I here show that the highly conserved sex-determination gene doublesex (dsx) mediates sexual size dimorphism (SSD) in the gazelle dung beetle Digitonthophagus gazella. Because doublesex undergoes sex-specific splicing and sex-limited isoforms regulate different target genes, this suggests that dsx contributes to the resolution of intralocus sexual conflict in body size. However, these results contrast with previous studies demonstrating that dsx does not affect body size or SSD in Drosophila. This indicates that intraspecific body size variation is underlain by contrasting developmental mechanisms in different insect lineages. Furthermore, although male D. gazella have a longer development time than females, sexual bimaturism was not affected by dsx expression knockdown. In addition, and in contrast to secondary sexual morphology, dsx did not significantly affect nutritional plasticity in life history. Taken together, these findings indicate that dsx signalling contributes to intraspecific life history variation but that dsx's function in mediating sexual dimorphism in life history differs among traits and species. More generally, these findings suggest that genes ancestrally tasked with sex determination have been co-opted into the developmental regulation of life history traits and may represent an underappreciated mechanism of life history evolution.