Login / Signup

Detailed chromosome analysis of wild-type, immortalized fibroblasts with SV40T, E6E7, combinational introduction of cyclin dependent kinase 4, cyclin D1, telomerase reverse transcriptase.

Haruka TakadaTomisato MiuraSo FujibayashiNaomi SasakiKouhei TakahashiEriko SuganoHiroshi TomitaTaku OzakiTohru KiyonoMitsuaki A YoshidaTomokazu Fukuda
Published in: In vitro cellular & developmental biology. Animal (2021)
Cell immortalization enables us to expand the cultured cell infinitely. However, the process of immortalization sometimes changes the nature of the original cell. In this study, we established immortalized embryonic fibroblasts with oncogenic SV40T and human papilla virus-derived E6E7, combinational expression of mutant cyclin-dependent kinase 4 (CDK4), cyclin D1, and telomerase reverse transcriptase (TERT) from identical primary wild-type human embryonic fibroblasts (HE16). After the establishment of immortalized cells, we compared the details of chromosome condition with the G-banding and Q-banding methods. There is no example of detailed analysis so far about chromosome abnormalities, such as trisomy, ring chromosome, reciprocal translocation, and dicentric chromosomes. The detailed chromosome analysis revealed that immortalized cells with SV40T and E6E7 showed intensive chromosome abnormalities, such as gain or loss of the chromosomes all through the genome. Furthermore, we detected that the incidence of chromosome abnormities in the immortalized cell with the combinational introduction of R24C mutant of CDK4, cyclin D1, and TERT is almost identical to that of wild-type cell. Furthermore, short tandem repeat analysis demonstrated that the origin of K4DT cell is primary HE16. These results showed that cellular immortalization with CDK4, cyclin D1, and TERT is more advantageous in keeping the chromosome's original condition than oncogenic immortalization methods.
Keyphrases