Login / Signup

Three-dimensional spheroid cell culture of human MSC-derived neuron-like cells: New in vitro model to assess magnetite nanoparticle-induced neurotoxicity effects.

Uliana De SimoneAnna Cleta CrocePatrizia PignattiEleonora BuscagliaFrancesca CaloniTeresa Coccini
Published in: Journal of applied toxicology : JAT (2022)
As nanoparticles (NPs) can access the brain and impact on CNS function, novel in vitro models for the evaluation of NPs-induced neurotoxicity are advocated. Three-dimensional spheroids of primary neuron-like cells (hNLCs) of human origin have been generated, from differentiation of human umbilical cord mesenchymal stem cells (MSCs). The study evaluated Fe 3 O 4 NP impact on the differentiation process by applying the challenge at complete 3D hNLC spheroid formation (after 4 days, T4) or at beginning of neurogenic induction/simultaneously 3D forming (T0). Different endpoints were monitored over time (up to 10 days): spheroid growth, size, morphology, ATP, cell death, neuronal markers (β-Tub III, MAP-2, and NSE), NP uptake. At T0 application, a marked concentration- and time-dependent cell mortality occurred: effect started early (day 2) and low concentration (1 μg/ml) and exacerbated (80% mortality) after prolonged time (day 6) and increased concentrations (50 μg/ml). ATP was strikingly affected. All neuronal markers were downregulated, and spheroid morphology altered in a concentration-dependent manner (from ≥5 μg/ml) after day 2. Fe 3 O 4 NPs applied at complete 3D formation (T4) still induced adverse effects although less severe: cell mortality (20-60%) and ATP content decrease (10-40%) were observed in a concentration-dependent manner (from ≥ 5 μg/ml). A neuronal-specific marker effect and spheroid size reduction from 25 μg/ml without morphology alteration were evidenced. This finding provides additional information on neurotoxic effects of Fe 3 O 4 NPs in a new 3D hNLC spheroid model derived from MSCs that could find a consistent application as in a testing strategy serving in first step hazard identification for correct risk assessment.
Keyphrases