Login / Signup

Integrated metabolome and transcriptome analysis provides insights on the floral scent formation in Hydrangea arborescens.

Yanguo KeYiwei ZhouYiying LvYing QiHuanyu WeiYu LeiFeiyan HuangFarhat Abbas
Published in: Physiologia plantarum (2023)
Hydrangea (Hydrangea arborescens var. 'Annabelle') flowers are composed of sweet aroma sepals rather than true petals and can change color. Floral volatiles play important roles in plants, such as attracting pollinators, defending against herbivores, and signaling. However, the biosynthesis and regulatory mechanisms underlying fragrance formation in H. arborescens during flower development remain unknown. In this study, a combination of metabolite profiling and RNA sequencing (RNA-seq) was employed to identify genes associated with floral scent biosynthesis mechanisms in 'Annabelle' flowers at three developmental stages (F1, F2, and F3). The floral volatile data revealed that the 'Annabelle' volatile profile includes a total of 33 volatile organic compounds (VOCs), and VOCs were abundant during the F2 stage of flower development, followed by the F1 and F3 stages, respectively. Terpenoids and benzenoids/phenylpropanoids were abundant during the F2 and F1 stages, with the latter being the most abundant, whereas fatty acid derivatives and other compounds were found in large amount during the F3 stage. According to ultra performance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS) analysis, benzene and substituted derivatives, carboxylic acids and derivatives, and fatty acyls play a significant role in the floral metabolite profile. The transcriptome data revealed a total of 17,461 differentially expressed genes (DEGs), with 7,585, 12,795, and 9,044 DEGs discovered between the F2 and F1, F3 and F1, and F2 and F3 stages, respectively. Several terpenoids and benzenoids/phenylpropanoids biosynthesis-related DEGs were identified, and GRAS/bHLH/MYB/AP2/WRKY were more abundant among transcription factors (TFs). Finally, DEGs interlinked with VOCs compounds were determined using cytoscape and k-means analysis. Our results paves the way for the discovery of new genes, critical data for future genetic studies, and a platform for the metabolic engineering of genes involved in the production of Hydrangea's signature floral fragrance.
Keyphrases