The roles of chloroplast membrane lipids in abiotic stress responses.
Jinlu LiLu-Ning LiuQingwei MengHai FanNa SuiPublished in: Plant signaling & behavior (2020)
Plant chloroplasts have complex membrane systems. Among these, thylakoids serve as the sites for photosynthesis and photosynthesis-related adaptation. In addition to the photosynthetic membrane complexes and associated molecules, lipids in the thylakoid membranes, are predominantly composed of MGDG (monogalactosyldiacylglycerol), DGDG (digalactosyldiacylglycerol), SQDG (sulfoquinovosyldiacylglycerol) and PG (phosphatidylglycerol), play essential roles in shaping the thylakoid architecture, electron transfer, and photoregulation. In this review, we discuss the effect of abiotic stress on chloroplast structure, the changes in membrane lipid composition, and the degree of unsaturation of fatty acids. Advanced understanding of the mechanisms regulating chloroplast membrane lipids and unsaturated fatty acids in response to abiotic stresses is indispensable for improving plant resistance and may inform the strategies of crop breeding.