Login / Signup

The role and mechanisms of rstA in the intracellular survival of fish pathogenic Aeromonas hydrophila.

Xiaoxu ZhangLiwei ChenQingpi YanLingmin ZhaoLixing HuangDongling ZhangYingxue Qin
Published in: Journal of fish diseases (2023)
In this study, RNAi technology was used to silence the gene rstA in Aeromonas hydrophila. The strain rstA-RNAi displayed significant decrease in intracellular survival compared with that of the wild-type strain B11. Transcriptome analysis explored that the expression of some important anti-stress protein genes was significantly upregulated in rstA-RNAi compared with the wild-type strain, while the expression of the genes related to iron acquisition and type VI secretion system was significantly downregulated. Further study found that under low pH and H 2 O 2 stress, the anti-stress protein genes were expressed at a low level in rstA-RNAi, the growth ability of rstA-RNAi was also significantly lower than that of wild-type strain. The results also displayed that with the fluctuation of iron concentration, the expression of some genes related to iron acquisition remained at a low level in rstA-RNAi, and the growth ability of rstA-RNAi was lower than that of the wild-type strain under the same culture conditions, indicating rstA can regulate iron acquisition and further affect the bacteria growth. The adhesion ability of rstA-RNAi to fish macrophages was reduced, suggesting rstA may be also affect the formation of type VI secretion system of A. hydrophila.
Keyphrases