Eye Tracking Research on the Influence of Spatial Frequency and Inversion Effect on Facial Expression Processing in Children with Autism Spectrum Disorder.
Kun ZhangYishuang YuanJingying ChenGuangshuai WangQian ChenMeijuan LuoPublished in: Brain sciences (2022)
Facial expression processing mainly depends on whether the facial features related to expressions can be fully acquired, and whether the appropriate processing strategies can be adopted according to different conditions. Children with autism spectrum disorder (ASD) have difficulty accurately recognizing facial expressions and responding appropriately, which is regarded as an important cause of their social disorders. This study used eye tracking technology to explore the internal processing mechanism of facial expressions in children with ASD under the influence of spatial frequency and inversion effects for improving their social disorders. The facial expression recognition rate and eye tracking characteristics of children with ASD and typical developing (TD) children on the facial area of interest were recorded and analyzed. The multi-factor mixed experiment results showed that the facial expression recognition rate of children with ASD under various conditions was significantly lower than that of TD children. TD children had more visual attention to the eyes area. However, children with ASD preferred the features of the mouth area, and lacked visual attention and processing of the eyes area. When the face was inverted, TD children had the inversion effect under all three spatial frequency conditions, which was manifested as a significant decrease in expression recognition rate. However, children with ASD only had the inversion effect under the LSF condition, indicating that they mainly used a featural processing method and had the capacity of configural processing under the LSF condition. The eye tracking results showed that when the face was inverted or facial feature information was weakened, both children with ASD and TD children would adjust their facial expression processing strategies accordingly, to increase the visual attention and information processing of their preferred areas. The fixation counts and fixation duration of TD children on the eyes area increased significantly, while the fixation duration of children with ASD on the mouth area increased significantly. The results of this study provided theoretical and practical support for facial expression intervention in children with ASD.