Smart and Sustainable Crop Protection: Design and Evaluation of a Novel α-Amylase-Responsive Nanopesticide for Effective Pest Control.
Jiaqing LiDonglin LiZhaoyang ZhangChang YuDan SunZiyao MoJiayin WangMmby MohamedHong YouHu WanJianhong LiShun HePublished in: Journal of agricultural and food chemistry (2024)
In this study, an α-amylase-responsive controlled-release formulation was developed by capping polydopamine onto β-cyclodextrin-modified abamectin-loaded hollow mesoporous silica nanoparticles. The prepared Aba@HMS@CD@PDA were subjected to characterization using various analytical techniques. The findings revealed that Aba@HMS@CD@PDA, featuring a loading rate of 18.8 wt %, displayed noteworthy release behavior of abamectin in the presence of α-amylase. In comparison to abamectin EC, Aba@HMS@CD@PDA displayed a significantly foliar affinity and improved rainfastness on lotus leaves. The results of field trail demonstrated a significantly higher control efficacy against Spodoptera litura Fabricius compared to abamectin EC at all concentrations after 7, 14, and 21 days of spaying, showcasing the remarkable persistence of Aba@HMS@CD@PDA. These results underscore the potential of Aba@HMS@CD@PDA as a novel and persistently effective strategy for sustainable on-demand crop protection. The application of nanopesticides can enhance the effectiveness and efficiency of pesticide utilization, contributing to more sustainable agricultural practices.