DeePaN: deep patient graph convolutional network integrating clinico-genomic evidence to stratify lung cancers for immunotherapy.
Chao FangDong XuJing SuJonathan R DryBolan LinghuPublished in: NPJ digital medicine (2021)
Immuno-oncology (IO) therapies have transformed the therapeutic landscape of non-small cell lung cancer (NSCLC). However, patient responses to IO are variable and influenced by a heterogeneous combination of health, immune, and tumor factors. There is a pressing need to discover the distinct NSCLC subgroups that influence response. We have developed a deep patient graph convolutional network, we call "DeePaN", to discover NSCLC complexity across data modalities impacting IO benefit. DeePaN employs high-dimensional data derived from both real-world evidence (RWE)-based electronic health records (EHRs) and genomics across 1937 IO-treated NSCLC patients. DeePaN demonstrated effectiveness to stratify patients into subgroups with significantly different (P-value of 2.2 × 10-11) overall median survival of 20.35 months and 9.42 months post-IO therapy. Significant differences in IO outcome were not seen from multiple non-graph-based unsupervised methods. Furthermore, we demonstrate that patient stratification from DeePaN has the potential to augment the emerging IO biomarker of tumor mutation burden (TMB). Characterization of the subgroups discovered by DeePaN indicates potential to inform IO therapeutic insight, including the enrichment of mutated KRAS and high blood monocyte count in the IO beneficial and IO non-beneficial subgroups, respectively. Our work has proven the concept that graph-based AI is feasible and can effectively integrate high-dimensional genomic and EHR data to meaningfully stratify cancer patients on distinct clinical outcomes, with potential to inform precision oncology.
Keyphrases
- electronic health record
- small cell lung cancer
- end stage renal disease
- case report
- ejection fraction
- newly diagnosed
- advanced non small cell lung cancer
- neural network
- chronic kidney disease
- healthcare
- palliative care
- machine learning
- big data
- public health
- convolutional neural network
- randomized controlled trial
- stem cells
- peritoneal dialysis
- single cell
- human health
- gene expression
- clinical decision support
- risk assessment
- copy number
- data analysis
- dendritic cells
- brain metastases
- patient reported outcomes
- wild type
- genome wide
- mesenchymal stem cells
- health information
- tyrosine kinase