Login / Signup

Manipulation of Signal Gradient and Transcription Factors Recapitulates Multiple Hypothalamic Identities.

Maho YamamotoAgnes Lee Chen OngTakuma ShinozukaManabu ShiraiNoriaki Sasai
Published in: Stem cells (Dayton, Ohio) (2023)
During development, the hypothalamus emerges from the ventral diencephalon and is regionalised into several distinct functional domains. Each domain is characterised by a different combination of transcription factors, including Nkx2.1, Nkx2.2, Pax6, and Rx, which are expressed in the presumptive hypothalamus and its surrounding regions, and play critical roles in defining each area. Here, we recapitulated the molecular networks formed by the gradient of Sonic Hedgehog (Shh) and the aforementioned transcription factors. Using combinatorial experimental systems of directed neural differentiation of mouse embryonic stem (ES) cells, as well as a reporter mouse line and gene overexpression in chick embryos, we deciphered the regulation of transcription factors by different Shh signal intensities. We then used CRISPR/Cas9 mutagenesis to demonstrate the mutual repression between Nkx2.1 and Nkx2.2 in a cell-autonomous manner; however, they induce each other in a non-cell-autonomous manner. Moreover, Rx resides upstream of all these transcription factors and determines the location of the hypothalamic region. Our findings suggest that Shh signalling and its downstream transcription network are required for hypothalamic regionalisation and establishment.
Keyphrases