Login / Signup

Selective Activation of ZAK β Expression by 3-Hydroxy-2-Phenylchromone Inhibits Human Osteosarcoma Cells and Triggers Apoptosis via JNK Activation.

Chien-Yao FuIng-Shiow LayMarthandam Asokan ShibuYan-Shen TsengWei-Wen KuoJaw-Ji YangTso-Fu WangB Mahalakshmi BharathYu-Lan YehChih-Yang Huang
Published in: International journal of molecular sciences (2020)
Although various advancements in radical surgery and neoadjuvant chemotherapy have been developed in treating osteosarcoma (OS), their clinical prognosis remains poor. A synthetic chemical compound, 3-hydroxylflavone, that is reported to regulate ROS production is known to inhibit human bone osteosarcoma cells. However, its role and mechanism in human OS cells remains unclear. In this study, we have determined the potential of 3-Hydroxy-2-phenylchromone (3-HF) against OS using human osteosarcoma (HOS) cells. Our previous studies showed that Zipper sterile-alpha-motif kinase (ZAK), a kinase member of the MAP3K family, was involved in various cellular events such as cell proliferation and cell apoptosis, and encoded two transcriptional variants, ZAKα and β. In this study, we show that 3-HF induces the expression of ZAK and thereby enhances cellular apoptosis. Using gain of function and loss of function studies, we have demonstrated that ZAK activation by 3-HF in OS cells is confined to a ZAKβ form that presumably plays a leading role in triggering ZAKα expression, resulting in an aggravated cancer apoptosis. Our results also validate ZAKβ as the predominant form of ZAK to drive the anticancer mechanism in HOS cells.
Keyphrases