Login / Signup

Integrating Anion-π + Interaction and Crowded Conformation to Develop Multifunctional NIR AIEgen for Effective Tumor Theranostics via Hippo-YAP Pathway.

Shiping YangHongchi YuJunkai LiuLunjie MaZhe HouJia MaMichael Z MiaoRyan Tsz Kin KwokJianwei SunHerman H Y SungIan D WilliamsJacky W Y LamXiaoheng LiuBen-Zhong Tang
Published in: ACS nano (2023)
The technology of aggregation-induced emission (AIE) presents a promising avenue for fluorescence imaging-guided photodynamic cancer therapy. However, existing near-infrared AIE photosensitizers (PSs) frequently encounter limitations, including tedious synthesis, poor tumor retention, and a limited understanding of the underlying molecular biology mechanism. Herein, an effective molecular design paradigm of anion-π + interaction combined with the inherently crowded conformation that could enhance fluorescence efficacy and reactive oxygen species generation was proposed through a concise synthetic method. Mechanistically, upon photosensitization, the Hippo signaling pathway contributes to the death of melanoma cells and promotes the nuclear location of its downstream factor, yes-associated protein, which regulates the transcription and expression of apoptosis-related genes. The finding in this study would trigger the development of high-performance and versatile AIE PSs for precision cancer therapy based on a definite regulatory mechanism.
Keyphrases