Molecular Dynamics Study on the Effect of Polyacrylamide on Electric Field Demulsification of Oil-in-Water Emulsion.
Shasha LiuYawen YuanLin WangShideng YuanShiling YuanPublished in: Langmuir : the ACS journal of surfaces and colloids (2024)
The effect of the water-soluble polymer (partially hydrolyzed polyacrylamide, HPAM) in produced water on the demulsification process of the electric field was studied by molecular dynamics simulations. By comparing the coalescence process of oil droplets in the electric field environment with or without HPAM, we find that HPAM in the water phase can promote the coalescence of nearly oil droplets but hinder the deformation and migration of oil droplets. By analyzing the radial distribution function and interaction energy between molecules, we conclude that the existence of HPAM molecules can reduce the hydrophilicity of other molecules through their strong interaction with water, and sodium ions (Na + ) have strong interaction with bound water in the process of breaking away from HPAM, thus leading the movement of water molecules. At the same time, the influence of HPAM molecules located between the two oil droplets on the demulsification process was also studied. The HPAM molecules and sodium ions located between the two oil droplets also affected the coalescence process of oil droplets under an electric field by interacting with water.