An Examination of the Stochastic Distribution of Spatial Accessibility to Intensive Care Unit Beds during the COVID-19 Pandemic: A Case Study of the Greater Houston Area of Texas.
Jinwoo ParkDaniel W GoldbergPublished in: Geographical analysis (2022)
Sufficient and reliable health care access is necessary for people to be able to maintain good health. Hence, investigating the uncertainty embedded in the temporal changes of inputs would be beneficial for understanding their impact on spatial accessibility. However, previous studies are limited to implementing only the uncertainty of mobility, while health care resource availability is a significant concern during the coronavirus disease (COVID-19) pandemic. Our study examined the stochastic distribution of spatial accessibility under the uncertainties underlying the availability of intensive care unit (ICU) beds and ease of mobility in the Greater Houston area of Texas. Based on the randomized supply and mobility from their historical changes, we employed Monte Carlo simulation to measure ICU bed accessibility with an enhanced two-step floating catchment area (E2SFCA) method. We then conducted hierarchical clustering to classify regions of adequate (sufficient and reliable) accessibility and inadequate (insufficient and unreliable) accessibility. Lastly, we investigated the relationship between the accessibility measures and the case fatality ratio of COVID-19. As result, locations of sufficient access also had reliable accessibility; downtown and outer counties, respectively, had adequate and inadequate accessibility. We also raised the possibility that inadequate health care accessibility may cause higher COVID-19 fatality ratios.