Login / Signup

Development of Bioactive PEGylated Nanostructured Platforms for Sequential Delivery of Doxorubicin and Imatinib to Overcome Drug Resistance in Metastatic Tumors.

Biki GuptaThiruganesh RamasamyBijay Kumar PoudelShiva PathakShobha RegmiJu Yeon ChoiYoulim SonRaj Kumar ThapaJee-Heon JeongJae Ryong KimHan-Gon ChoiChul Soon YongJong Oh Kim
Published in: ACS applied materials & interfaces (2017)
Metastasis of cancers accounts for almost all cancer-related deaths. In this study, we report a PEGylated nanostructured platform for coadministration of doxorubicin (DOX) and imatinib (IMT) intended to effectively inhibit metastatic tumors. The DOX and IMT coloaded nanostructured system (DOX/IMT-N) is characterized by an excellent encapsulation potential for both drugs and shows sequential and sustained drug release in vitro. DOX/IMT-N significantly inhibited the in vitro proliferation of MDA-MB-231 and SK-MEL-28 cells. The inhibitory effect on in vitro proliferation of the cells was significantly greater than the effect of free DOX, DOX/IMT cocktail, or the nanostructured system housing DOX only (DOX-N). DOX/IMT-N remarkably enhanced cellular drug uptake, resulting in enhanced apoptosis, caused by significant increases in the expression levels of apoptotic marker proteins. Intravenous administration of DOX/IMT-N to MBA-MB-231 xenograft tumor-bearing mice resulted in significantly improved inhibition of tumor progression compared to that with DOX, DOX/IMT, or DOX-N. Therefore, the nanostructured DOX/IMT-N system could potentially aid in overcoming drug resistance in metastatic tumors and improve the effectiveness of metastatic tumor therapeutics.
Keyphrases