Determination of ethanol in micro-volumes of blood by headspace gas chromatography: Statistical comparison between capillary and venous sampling sites.
Luke TaylorVytautas RemeškevičiusLili SaskoyTara BrodieJeshan MahmudHannah Jayne MoirJames BrounerChristopher HoweBaljit ThattiSein O' ConnellGavin TrotterBrian RooneyPublished in: Medicine, science, and the law (2020)
Ethanol is the most commonly encountered drug in forensic toxicology, with widespread use throughout society. For this reason, it is important that there are a variety of reliable and robust methods to detect and quantify the content of alcohol in blood samples of suspected drink drivers. A common method of detection is gas chromatography with flame ionisation detector, with a number of sample preparation techniques employed. Typically, venous blood is sampled and used in the analysis. However, there is currently no legal specification in the UK of the blood sample source. This study investigates the use of capillary blood as an alternative to venous blood alongside two different sample volumes: 100 and 10 µL. Venous and capillary blood were collected from volunteers who had consumed alcohol. All blood sampling was carried out one hour after cessation of drinking. The results show a statistically significant difference between venous and capillary samples, with an average difference of 3.38 ± 1.99 mg/100 mL at 100 μL and approximately 4.13 ± 2.42 mg/100 mL at 10 μL, respectively. Predominantly, venous blood was detected at higher concentrations than the corresponding capillary samples. The deviations in alcohol samples between venous and capillary blood are consistent with previous studies. However, our research indicates that capillary blood is a viable matrix to test for alcohol, albeit one that underestimates blood-alcohol content in relation to venous sampling. There was no statistically significant difference between the 100 and 10 µL sample preparation methods on an individual basis, which infers that micro-volumes of alcohol are suitable for forensic blood-alcohol analysis.