Login / Signup

Polydopamine Nanoparticles as an Organic and Biodegradable Multitasking Tool for Neuroprotection and Remote Neuronal Stimulation.

Matteo BattagliniAttilio MarinoAlessio CarmignaniChristos TapeinosValentina CaudaAndrea AnconaNadia GarinoVeronica VighettoGabriele La RosaEdoardo SinibaldiGianni Ciofani
Published in: ACS applied materials & interfaces (2020)
Oxidative stress represents a common issue in most neurological diseases, causing severe impairments of neuronal cell physiological activity that ultimately lead to neuron loss of function and cellular death. In this work, lipid-coated polydopamine nanoparticles (L-PDNPs) are proposed both as antioxidant and neuroprotective agents, and as a photothermal conversion platform able to stimulate neuronal activity. L-PDNPs showed the ability to counteract reactive oxygen species (ROS) accumulation in differentiated SH-SY5Y, prevented mitochondrial ROS-induced dysfunctions and stimulated neurite outgrowth. Moreover, for the first time in the literature, the photothermal conversion capacity of L-PDNPs was used to increase the intracellular temperature of neuron-like cells through near-infrared (NIR) laser stimulation, and this phenomenon was thoroughly investigated using a fluorescent temperature-sensitive dye and modeled from a mathematical point of view. It was also demonstrated that the increment in temperature caused by the NIR stimulation of L-PDNPs was able to produce a Ca2+ influx in differentiated SH-SY5Y, being, to the best of our knowledge, the first example of organic nanostructures used in such an approach. This work could pave the way to new and exciting applications of polydopamine-based and of other NIR-responsive antioxidant nanomaterials in neuronal research.
Keyphrases