Login / Signup

Shape matters-the interaction of gold nanoparticles with model lung surfactant monolayers.

Sheikh I HossainZhen LuoEvelyne DeplazesSuvash Chandra Saha
Published in: Journal of the Royal Society, Interface (2021)
The lung surfactant monolayer (LSM) forms the main biological barrier for any inhaled particles to enter our bloodstream, including gold nanoparticles (AuNPs) present as air pollutants and under investigation for use in biomedical applications. Understanding the interaction of AuNPs with lung surfactant can assist in understanding how AuNPs enter our lungs. In this study, we use coarse-grained molecular dynamics simulations to investigate the effect of four different shape D AuNPs (spherical, box, icosahedron and rod) on the structure and dynamics of a model LSM, with a particular focus on differences resulting from the shape of the AuNP. Monolayer-AuNP systems were simulated in two different states: the compressed state and the expanded state, representing inhalation and exhalation conditions, respectively. Our results indicate that the compressed state is more affected by the presence of the AuNPs than the expanded state. Our results show that in the compressed state, the AuNPs prevent the monolayer from reaching the close to zero surface tension required for normal exhalation. In the compressed state, all four nanoparticles (NPs) reduce the lipid order parameters and cause a thinning of the monolayer where the particles drag surfactant molecules into the water phase. Comparing the different properties shows no trend concerning which shape has the biggest effect on the monolayer, as shape-dependent effects vary among the different properties. Insights from this study might assist future work of how AuNP shapes affect the LSM during inhalation or exhalation conditions.
Keyphrases
  • gold nanoparticles
  • molecular dynamics simulations
  • molecular dynamics
  • transcription factor
  • molecular docking
  • cystic fibrosis
  • multidrug resistant
  • fatty acid